Recently it was shown that the response time of First-Come-First-Served (FCFS) scheduling can be stochastically and asymptotically improved upon by the {\it Nudge} scheduling algorithm in case of light-tailed job size distributions. Such improvements are feasible even when the jobs are partitioned into two types and the scheduler only has information about the type of incoming jobs (but not their size). In this paper we introduce Nudge-$M$ scheduling, where basically any incoming type-1 job is allowed to pass any type-2 job that is still waiting in the queue given that it arrived as one of the last $M$ jobs. We prove that Nudge-$M$ has an asymptotically optimal response time within a large family of Nudge scheduling algorithms when job sizes are light-tailed. Simple explicit results for the asymptotic tail improvement ratio (ATIR) of Nudge-$M$ over FCFS are derived as well as explicit results for the optimal parameter $M$. An expression for the ATIR that only depends on the type-1 and type-2 mean job sizes and the fraction of type-1 jobs is presented in the heavy traffic setting. The paper further presents a numerical method to compute the response time distribution and mean response time of Nudge-$M$ scheduling provided that the job size distribution of both job types follows a phase-type distribution (by making use of the framework of Markov modulated fluid queues with jumps).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员