Least absolute shrinkage and selection operator or Lasso, introduced by Tibshirani (1996), is one of the widely used regularization methods in regression. It is observed that the properties of Lasso vary wildly depending on the choice of the penalty parameter. The recent results of Lahiri (2021) suggest that, depending on the nature of the penalty parameter, Lasso can either be variable selection consistent or be $n^{1/2}-$consistent. However, practitioners generally implement Lasso by choosing the penalty parameter in a data-dependent way, the most popular being the $K$-fold cross-validation. In this paper, we explore the variable selection consistency and $n^{1/2}-$consistency of Lasso when the penalty is chosen based on $K$-fold cross-validation with $K$ being fixed. We consider the fixed-dimensional heteroscedastic linear regression model and show that Lasso with $K$-fold cross-validation based penalty is $n^{1/2}-$consistent, but not variable selection consistent. We also establish the $n^{1/2}-$consistency of the $K$-fold cross-validation based penalty as an intermediate result. Additionally, as a consequence of $n^{1/2}-$consistency, we establish the validity of Bootstrap to approximate the distribution of the Lasso estimator based on $K-$fold cross-validation. We validate the Bootstrap approximation in finite samples based on a moderate simulation study. Thus, our results essentially justify the use of $K$-fold cross-validation in practice to draw inferences based on $n^{1/2}-$scaled pivotal quantities in Lasso regression.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年3月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 10月22日
Arxiv
0+阅读 · 10月18日
VIP会员
相关VIP内容
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员