We use contention resolution schemes (CRS) to derive algorithms for the fair rationing of a single resource when agents have stochastic demands. We aim to provide ex-ante guarantees on the level of service provided to each agent, who may measure service in different ways (Type-I, II, or III), calling for CRS under different feasibility constraints (rank-1 matroid or knapsack). We are particularly interested in two-order CRS where the agents are equally likely to arrive in a known forward order or its reverse, which is motivated by online rationing at food banks. In particular, we derive a two-order CRS for rank-1 matroids with guarantee $1/(1+e^{-1/2})\approx 0.622$, which we prove is tight. This improves upon the $1/2$ guarantee that is best-possible under a single order (Alaei, SIAM J. Comput. 2014), while achieving separation with the $1-1/e\approx 0.632$ guarantee that is possible for random-order CRS (Lee and Singla, ESA 2018). Because CRS guarantees imply prophet inequalities, this also beats the two-order prophet inequality with ratio $(\sqrt{5}-1)/2\approx 0.618$ from (Arsenis, SODA 2021), which was tight for single-threshold policies. Rank-1 matroids suffice to provide guarantees under Type-II or III service, but Type-I service requires knapsack. Accordingly, we derive a two-order CRS for knapsack with guarantee $1/3$, improving upon the $1/(3+e^{-2})\approx 0.319$ guarantee that is best-possible under a single order (Jiang et al., SODA 2022). To our knowledge, $1/3$ provides the best-known guarantee for knapsack CRS even in the offline setting. Finally, we provide an upper bound of $1/(2+e^{-1})\approx 0.422$ for two-order knapsack CRS, strictly smaller than the upper bound of $(1-e^{-2})/2\approx0.432$ for random-order knapsack CRS.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员