With the popularization of AI solutions for image based problems, there has been a growing concern for both data privacy and acquisition. In a large number of cases, information is located on separate data silos and it can be difficult for a developer to consolidate all of it in a fashion that is appropriate for machine learning model development. Alongside this, a portion of these localized data regions may not have access to a labelled ground truth. This indicates that they have the capacity to reach conclusions numerically, but are not able to assign classifications amid a lack of pertinent information. Such a determination is often negligible, especially when attempting to develop image based solutions that often necessitate this capability. With this being the case, we propose an innovative vertical federated learning (VFL) model architecture that can operate under this common set of conditions. This is the first (and currently the only) implementation of a system that can work under the constraints of a VFL environment and perform image segmentation while maintaining nominal accuracies. We achieved this by utilizing an FCN that boasts the ability to operate on federates that lack labelled data and privately share the respective weights with a central server, that of which hosts the necessary features for classification. Tests were conducted on the CamVid dataset in order to determine the impact of heavy feature compression required for the transfer of information between federates, as well as to reach nominal conclusions about the overall performance metrics when working under such constraints.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月27日
Arxiv
0+阅读 · 2024年2月26日
Arxiv
0+阅读 · 2024年2月25日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月27日
Arxiv
0+阅读 · 2024年2月26日
Arxiv
0+阅读 · 2024年2月25日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员