Boolean function $F(x,y)$ for $x,y \in \{0,1\}^n$ is an XOR function if $F(x,y)=f(x\oplus y)$ for some function $f$ on $n$ input bits, where $\oplus$ is a bit-wise XOR. XOR functions are relevant in communication complexity, partially for allowing Fourier analytic technique. For total XOR functions it is known that deterministic communication complexity of $F$ is closely related to parity decision tree complexity of $f$. Montanaro and Osbourne (2009) observed that one-sided communication complexity $D_{cc}^{\rightarrow}(F)$ of $F$ is exactly equal to nonadaptive parity decision tree complexity $NADT^{\oplus}(f)$ of $f$. Hatami et al. (2018) showed that unrestricted communication complexity of $F$ is polynomially related to parity decision tree complexity of $f$. We initiate the studies of a similar connection for partial functions. We show that in case of one-sided communication complexity whether these measures are equal, depends on the number of undefined inputs of $f$. On the one hand, if $D_{cc}^{\rightarrow}(F)=t$ and $f$ is undefined on at most $O(\frac{2^{n-t}}{\sqrt{n-t}})$, then $NADT^{\oplus}(f)=t$. On the other hand, for a wide range of values of $D_{cc}^{\rightarrow}(F)$ and $NADT^{\oplus}(f)$ (from constant to $n-2$) we provide partial functions for which $D_{cc}^{\rightarrow}(F) < NADT^{\oplus}(f)$. In particular, we provide a function with an exponential gap between the two measures. Our separation results translate to the case of two-sided communication complexity as well, in particular showing that the result of Hatami et al. (2018) cannot be generalized to partial functions. Previous results for total functions heavily rely on Boolean Fourier analysis and the technique does not translate to partial functions. For the proofs of our results we build a linear algebraic framework instead. Separation results are proved through the reduction to covering codes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月14日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员