The restricted Boltzmann machine (RBM) is a representative generative model based on the concept of statistical mechanics. In spite of the strong merit of interpretability, unavailability of backpropagation makes it less competitive than other generative models. Here we derive differentiable loss functions for both binary and multinary RBMs. Then we demonstrate their learnability and performance by generating colored face images.


翻译:限制的Boltzmann机器(RBM)是一种基于统计力学概念的具有代表性的基因模型。 尽管解释的优点很强,但缺乏反向性能使它比其他基因模型竞争力低。 在这里,我们从二进制和多元制减压中得出了不同的损失功能。 然后,我们通过生成彩色面部图像来证明它们的可学习性和性。

0
下载
关闭预览

相关内容

受限玻尔兹曼机 是玻尔兹曼机(Boltzmann machine,BM)的一种特殊拓扑结构。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
相关论文
Top
微信扫码咨询专知VIP会员