Deep reinforcement learning (DRL) has achieved remarkable success in a wide range of sequential decision-making applications, including robotics, healthcare, smart grids, and finance. Recent studies reveal that adversaries can implant backdoors into DRL agents during the training phase. These backdoors can later be activated by specific triggers during deployment, compelling the agent to execute targeted actions and potentially leading to severe consequences, such as drone crashes or vehicle collisions. However, existing backdoor attacks utilize simplistic and heuristic trigger configurations, overlooking the critical impact of trigger design on attack effectiveness. To address this gap, we introduce TooBadRL, the first framework to systematically optimize DRL backdoor triggers across three critical aspects: injection timing, trigger dimension, and manipulation magnitude. Specifically, we first introduce a performance-aware adaptive freezing mechanism to determine the injection timing during training. Then, we formulate trigger selection as an influence attribution problem and apply Shapley value analysis to identify the most influential trigger dimension for injection. Furthermore, we propose an adversarial input synthesis method to optimize the manipulation magnitude under environmental constraints. Extensive evaluations on three DRL algorithms and nine benchmark tasks demonstrate that TooBadRL outperforms five baseline methods in terms of attack success rate while only slightly affecting normal task performance. We further evaluate potential defense strategies from detection and mitigation perspectives. We open-source our code to facilitate reproducibility and further research.


翻译:深度强化学习(DRL)在机器人、医疗保健、智能电网和金融等广泛的序列决策应用中取得了显著成功。近期研究表明,攻击者可在训练阶段向DRL智能体中植入后门。这些后门在部署期间可通过特定触发器激活,迫使智能体执行目标动作,可能导致严重后果,如无人机坠毁或车辆碰撞。然而,现有后门攻击采用简单且启发式的触发器配置,忽视了触发器设计对攻击效能的决定性影响。为填补这一空白,我们提出了TooBadRL,首个系统优化DRL后门触发器的框架,涵盖三个关键维度:注入时机、触发器维度和操纵幅度。具体而言,我们首先引入性能感知的自适应冻结机制,以确定训练过程中的注入时机。随后,我们将触发器选择建模为影响归因问题,并应用Shapley值分析识别最具影响力的注入触发器维度。此外,我们提出一种对抗性输入合成方法,在环境约束下优化操纵幅度。在三种DRL算法和九个基准任务上的广泛评估表明,TooBadRL在攻击成功率上优于五种基线方法,且对正常任务性能影响甚微。我们进一步从检测与缓解角度评估了潜在防御策略。我们已开源代码以促进可复现性及后续研究。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年1月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员