The minimum covariance determinant (MCD) estimator is ubiquitous in multivariate analysis, the critical step of which is to select a subset of a given size with the lowest sample covariance determinant. The concentration step (C-step) is a common tool for subset-seeking; however, it becomes computationally demanding for high-dimensional data. To alleviate the challenge, we propose a depth-based algorithm, termed as \texttt{FDB}, which replaces the optimal subset with the trimmed region induced by statistical depth. We show that the depth-based region is consistent with the MCD-based subset under a specific class of depth notions, for instance, the projection depth. With the two suggested depths, the \texttt{FDB} estimator is not only computationally more efficient but also reaches the same level of robustness as the MCD estimator. Extensive simulation studies are conducted to assess the empirical performance of our estimators. We also validate the computational efficiency and robustness of our estimators under several typical tasks such as principal component analysis, linear discriminant analysis, image denoise and outlier detection on real-life datasets. A R package \textit{FDB} and potential extensions are available in the Supplementary Materials.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员