The development of deep learning based image representation learning (IRL) methods has attracted great attention for various image understanding problems. Most of these methods require the availability of a high quantity and quality of annotated training images, which can be time-consuming and costly to gather. To reduce labeling costs, crowdsourced data, automatic labeling procedures or citizen science projects can be considered. However, such approaches increase the risk of including label noise in training data. It may result in overfitting on noisy labels when discriminative reasoning is employed. This leads to sub-optimal learning procedures, and thus inaccurate characterization of images. To address this, we introduce a generative reasoning integrated label noise robust deep representation learning (GRID) approach. Our approach aims to model the complementary characteristics of discriminative and generative reasoning for IRL under noisy labels. To this end, we first integrate generative reasoning into discriminative reasoning through a supervised variational autoencoder. This allows GRID to automatically detect training samples with noisy labels. Then, through our label noise robust hybrid representation learning strategy, GRID adjusts the whole learning procedure for IRL of these samples through generative reasoning and that of other samples through discriminative reasoning. Our approach learns discriminative image representations while preventing interference of noisy labels independently from the IRL method being selected. Thus, unlike the existing methods, GRID does not depend on the type of annotation, neural network architecture, loss function or learning task, and thus can be directly utilized for various problems. Experimental results show its effectiveness compared to state-of-the-art methods. The code of GRID is publicly available at https://github.com/gencersumbul/GRID.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月26日
Arxiv
0+阅读 · 2023年9月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员