In the classical prophet inequality settings, a gambler is given a sequence of $n$ random variables $X_1, \dots, X_n$, taken from known distributions, observes their values in this (potentially adversarial) order, and select one of them, immediately after it is being observed, so that its value is as high as possible. The classical \emph{prophet inequality} shows a strategy that guarantees a value at least half of that an omniscience prophet that picks the maximum, and this ratio is optimal. Here, we generalize the prophet inequality, allowing the gambler some additional information about the future that is otherwise privy only to the prophet. Specifically, at any point in the process, the gambler is allowed to query an oracle $\mathcal{O}$. The oracle responds with a single bit answer: YES if the current realization is greater than the remaining realizations, and NO otherwise. We show that the oracle model with $m$ oracle calls is equivalent to the \textsc{Top-$1$-of-$(m+1)$} model when the objective is maximizing the probability of selecting the maximum. This equivalence fails to hold when the objective is maximizing the competitive ratio, but we still show that any algorithm for the oracle model implies an equivalent competitive ratio for the \textsc{Top-$1$-of-$(m+1)$} model. We resolve the oracle model for any $m$, giving tight lower and upper bound on the best possible competitive ratio compared to an almighty adversary. As a consequence, we provide new results as well as improvements on known results for the \textsc{Top-$1$-of-$m$} model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月4日
Arxiv
0+阅读 · 2024年6月3日
Arxiv
0+阅读 · 2024年5月31日
Arxiv
0+阅读 · 2024年5月30日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年6月4日
Arxiv
0+阅读 · 2024年6月3日
Arxiv
0+阅读 · 2024年5月31日
Arxiv
0+阅读 · 2024年5月30日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员