Bu{\ss} et al [KDD 2020] recently proved that the problem of computing the betweenness of all nodes of a temporal graph is computationally hard in the case of foremost and fastest paths, while it is solvable in time O(n 3 T 2 ) in the case of shortest and shortest foremost paths, where n is the number of nodes and T is the number of distinct time steps. A new algorithm for temporal betweenness computation is introduced in this paper. In the case of shortest and shortest foremost paths, it requires O(n + M ) space and runs in time where M is the number of temporal edges, thus significantly improving the algorithm of Bu{\ss} et al in terms of time complexity (note that T is usually large). Experimental evidence is provided that our algorithm performs between twice and almost 250 times better than the algorithm of Bu{\ss} et al. Moreover, we were able to compute the exact temporal betweenness values of several large temporal graphs with over a million of temporal edges. For such size, only approximate computation was possible by using the algorithm of Santoro and Sarpe [WWW 2022]. Maybe more importantly, our algorithm extends to the case of restless walks (that is, walks with waiting constraints in each node), thus providing a polynomial-time algorithm (with complexity O(nM )) for computing the temporal betweenness in the case of several different optimality criteria. Such restless computation was known only for the shortest criterion (Rymar et al [JGAA 2023]), with complexity O(n 2 M T 2 ). We performed an extensive experimental validation by comparing different waiting constraints and different optimisation criteria. Moreover, as a case study, we investigate six public transit networks including Berlin, Rome, and Paris. Overall we find a general consistency between the different variants of betweenness centrality. However, we do measure a sensible influence of waiting constraints, and note some cases of low correlation for certain pairs of criteria in some networks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
31+阅读 · 2021年6月30日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
31+阅读 · 2021年6月30日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员