Many words are ambiguous in terms of their part of speech (POS). However, when a word appears in a text, this ambiguity is generally much reduced. Disambiguating POS involves using context to reduce the number of POS associated with words, and is one of the main challenges of lexical tagging. The problem of labeling words by POS frequently arises in natural language processing, for example for spelling correction, grammar or style checking, expression recognition, text-to-speech conversion, text corpus analysis, etc. Lexical tagging systems are thus useful as an initial component of many natural language processing systems. A number of recent lexical tagging systems produce multiple solutions when the text is lexically ambiguous or the uniquely correct solution cannot be found. These contributions aim to guarantee a zero silence rate: the correct tag(s) for a word must never be discarded. This objective is unrealistic for systems that tag each word uniquely. This article concerns a lexical disambiguation method adapted to the objective of a zero silence rate and implemented in Silberztein's INTEX system (1993). We present here a formal description of this method. We show that to verify a local disambiguation grammar in this framework, it is not sufficient to consider the transducer paths separately: one needs to verify their interactions. Similarly, if a combination of multiple transducers is used, the result cannot be predicted by considering them in isolation. Furthermore, when examining the initial labeling of a text as produced by INTEX, ideas for disambiguation rules come spontaneously, but grammatical intuitions may turn out to be inaccurate, often due to an unforeseen construction or ambiguity. If a zero silence rate is targeted, local grammars must be carefully tested. This is where a detailed specification of what a grammar will do once applied to texts would be necessary.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
14+阅读 · 2021年6月30日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
15+阅读 · 2022年1月24日
Arxiv
14+阅读 · 2021年6月30日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员