The paper explores the concept of the \emph{expectile risk measure} within the framework of the Fundamental Risk Quadrangle (FRQ) theory. According to the FRQ theory, a quadrangle comprises four stochastic functions associated with a random variable: ``error'', ``regret'', ``risk'', and ``deviation''. These functions are interconnected through a stochastic function known as the ``statistic''. Expectile is a risk measure that, similar to VaR (quantile) and CVaR (superquantile), can be employed in risk management. While quadrangles based on VaR and CVaR statistics are well-established and widely used, the paper focuses on the recently proposed quadrangles based on expectile. The aim of this paper is to rigorously examine the properties of these Expectile Quadrangles, with particular emphasis on a quadrangle that encompasses expectile as both a statistic and a measure of risk.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Discrete Morphological Neural Networks
Arxiv
0+阅读 · 2023年9月1日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
20+阅读 · 2021年9月22日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
26+阅读 · 2019年11月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Discrete Morphological Neural Networks
Arxiv
0+阅读 · 2023年9月1日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
20+阅读 · 2021年9月22日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
26+阅读 · 2019年11月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员