A matching $M$ in a graph $G$ is an \emph{acyclic matching} if the subgraph of $G$ induced by the endpoints of the edges of $M$ is a forest. Given a graph $G$ and a positive integer $\ell$, Acyclic Matching asks whether $G$ has an acyclic matching of size (i.e., the number of edges) at least $\ell$. In this paper, we first prove that assuming $\mathsf{W[1]\nsubseteq FPT}$, there does not exist any $\mathsf{FPT}$-approximation algorithm for Acyclic Matching that approximates it within a constant factor when the parameter is the size of the matching. Our reduction is general in the sense that it also asserts $\mathsf{FPT}$-inapproximability for Induced Matching and Uniquely Restricted Matching as well. We also consider three below-guarantee parameters for Acyclic Matching, viz. $\frac{n}{2}-\ell$, $\mathsf{MM(G)}-\ell$, and $\mathsf{IS(G)}-\ell$, where $n$ is the number of vertices in $G$, $\mathsf{MM(G)}$ is the matching number of $G$, and $\mathsf{IS(G)}$ is the independence number of $G$. Furthermore, we show that Acyclic Matching does not exhibit a polynomial kernel with respect to vertex cover number (or vertex deletion distance to clique) plus the size of the matching unless $\mathsf{NP}\subseteq\mathsf{coNP}\slash\mathsf{poly}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FPT:International Conference on Field-Programmable Technology。 Explanation:现场可编程技术国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/fpt/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员