The solution of conservation laws with parametrized shock waves presents challenges for both high-order numerical methods and model reduction techniques. We introduce an r-adaptivity scheme based on optimal transport and apply it to develop reduced order models for compressible flows. The optimal transport theory allows us to compute high-order r-adaptive meshes from a starting reference mesh by solving the Monge-Ampere equation. A high-order discretization of the conservation laws enables high-order solutions to be computed on the resulting r-adaptive meshes. Furthermore, the Monge-Ampere solutions contain mappings that are used to reduce the spatial locality of the resulting solutions and make them more amenable to model reduction. We use a non-intrusive model reduction method to construct reduced order models of both the mesh and the solution. The procedure is demonstrated on three supersonic and hypersonic test cases, with the hybridizable discontinuous Galerkin method being used as the full order model.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员