We consider the problem of reverse channel coding, that is, how to simulate a noisy channel over a digital channel efficiently. We propose two new coding schemes with practical advantages over previous approaches. First, we introduce ordered random coding (ORC) which uses a simple trick to reduce the coding cost of previous approaches based on importance sampling. Our derivation also illuminates a connection between these schemes and the so-called Poisson functional representation. Second, we describe a hybrid coding scheme which uses dithered quantization to efficiently communicate samples from distributions with bounded support.


翻译:我们考虑反向通道编码问题,即如何在数字频道上高效率地模拟噪音频道。我们提出了两个与以往方法相比具有实际优势的新编码办法。首先,我们引入了有顺序的随机编码(ORC),它使用简单的技巧来降低基于重要取样的先前方法的编码成本。我们的推算还揭示了这些办法与所谓的Poisson功能代表之间的关联。第二,我们描述了一种混合编码办法,它利用抖动的定量来有效交流在受约束支持的情况下分布的样本。

0
下载
关闭预览

相关内容

【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
54+阅读 · 2020年8月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员