We prove that various stochastic gradient descent methods, including the stochastic gradient descent (SGD), stochastic heavy-ball (SHB), and stochastic Nesterov's accelerated gradient (SNAG) methods, almost surely avoid any strict saddle manifold. To the best of our knowledge, this is the first time such results are obtained for SHB and SNAG methods. Moreover, our analysis expands upon previous studies on SGD by removing the need for bounded gradients of the objective function and uniformly bounded noise. Instead, we introduce a more practical local boundedness assumption for the noisy gradient, which is naturally satisfied in empirical risk minimization problems typically seen in training of neural networks.


翻译:根据我们所知,这是第一次在SHB和SNAG方法中取得这种结果。 此外,我们的分析扩大了以往关于SGD的研究的范围,消除了对目标功能受约束的梯度和统一约束的噪音的需要。 相反,我们为噪音梯度引入了更实际的本地约束性假设,这自然满足了在神经网络培训中常见的经验风险最小化问题。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员