Two fundamental requirements for the deployment of machine learning models in safety-critical systems are to be able to detect out-of-distribution (OOD) data correctly and to be able to explain the prediction of the model. Although significant effort has gone into both OOD detection and explainable AI, there has been little work on explaining why a model predicts a certain data point is OOD. In this paper, we address this question by introducing the concept of an OOD counterfactual, which is a perturbed data point that iteratively moves between different OOD categories. We propose a method for generating such counterfactuals, investigate its application on synthetic and benchmark data, and compare it to several benchmark methods using a range of metrics.


翻译:在安全临界系统中部署机器学习模型的两个基本要求是,能够正确探测分配外数据,并能够解释对模型的预测。虽然在OOD探测和可解释的AI方面都作出了很大努力,但在解释为什么模型预测某一数据点是OOD方面没有做多少工作。在本文件中,我们通过引入OOOD反事实概念来解决这一问题,这是一个在OOD类别之间反复移动的扰动数据点。我们提出了一种方法,用以产生这种反事实,调查其在合成数据和基准数据方面的应用,并用一系列尺度将其与若干基准方法进行比较。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员