Given a set of points $P = (P^+ \sqcup P^-) \subset \mathbb{R}^d$ for some constant $d$ and a supply function $\mu:P\to \mathbb{R}$ such that $\mu(p) > 0~\forall p \in P^+$, $\mu(p) < 0~\forall p \in P^-$, and $\sum_{p\in P}{\mu(p)} = 0$, the geometric transportation problem asks one to find a transportation map $\tau: P^+\times P^-\to \mathbb{R}_{\ge 0}$ such that $\sum_{q\in P^-}{\tau(p, q)} = \mu(p)~\forall p \in P^+$, $\sum_{p\in P^+}{\tau(p, q)} = -\mu(q)~ \forall q \in P^-$, and the weighted sum of Euclidean distances for the pairs $\sum_{(p,q)\in P^+\times P^-}\tau(p, q)\cdot ||q-p||_2$ is minimized. We present the first deterministic algorithm that computes, in near-linear time, a transportation map whose cost is within a $(1 + \varepsilon)$ factor of optimal. More precisely, our algorithm runs in $O(n\varepsilon^{-(d+2)}\log^5{n}\log{\log{n}})$ time for any constant $\varepsilon > 0$. Surprisingly, our result is not only a generalization of a bipartite matching one to arbitrary instances of geometric transportation, but it also reduces the running time for all previously known $(1 + \varepsilon)$-approximation algorithms, randomized or deterministic, even for geometric bipartite matching. In particular, we give the first $(1 + \varepsilon)$-approximate deterministic algorithm for geometric bipartite matching and the first $(1 + \varepsilon)$-approximate deterministic or randomized algorithm for geometric transportation with no dependence on $d$ in the exponent of the running time's polylog. As an additional application of our main ideas, we also give the first randomized near-linear $O(\varepsilon^{-2} m \log^{O(1)} n)$ time $(1 + \varepsilon)$-approximation algorithm for the uncapacitated minimum cost flow (transshipment) problem in undirected graphs with arbitrary real edge costs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员