We study Satisfiability Modulo Theories (SMT) enriched with the so-called Ramsey quantifiers, which assert the existence of cliques (complete graphs) in the graph induced by some formulas. The extended framework is known to have applications in proving program termination (in particular, whether a transitive binary predicate is well-founded), and monadic decomposability of SMT formulas. Our main result is a new algorithm for eliminating Ramsey quantifiers from three common SMT theories: Linear Integer Arithmetic (LIA), Linear Real Arithmetic (LRA), and Linear Integer Real Arithmetic (LIRA). In particular, if we work only with existentially quantified formulas, then our algorithm runs in polynomial time and produces a formula of linear size. One immediate consequence is that checking well-foundedness of a given formula in the aforementioned theory defining a transitive predicate can be straightforwardly handled by highly optimized SMT-solvers. We show also how this provides a uniform semi-algorithm for verifying termination and liveness with completeness guarantee (in fact, with an optimal computational complexity) for several well-known classes of infinite-state systems, which include succinct timed systems, one-counter systems, and monotonic counter systems. Another immediate consequence is a solution to an open problem on checking monadic decomposability of a given relation in quantifier-free fragments of LRA and LIRA, which is an important problem in automated reasoning and constraint databases. Our result immediately implies decidability of this problem with an optimal complexity (coNP-complete) and enables exploitation of SMT-solvers. It also provides a termination guarantee for the generic monadic decomposition algorithm of Veanes et al. for LIA, LRA, and LIRA. We report encouraging experimental results on a prototype implementation of our algorithms on micro-benchmarks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Dynamic AGV Task Allocation in Intelligent Warehouses
Arxiv
0+阅读 · 2023年12月26日
Arxiv
26+阅读 · 2019年11月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员