Deep convolutional neural networks (CNNs) have obtained remarkable performance in single image super-resolution (SISR). However, very deep networks can suffer from training difficulty and hardly achieve further performance gain. There are two main trends to solve that problem: improving the network architecture for better propagation of features through large number of layers and designing an attention mechanism for selecting most informative features. Recent SISR solutions propose advanced attention and self-attention mechanisms. However, constructing a network to use an attention block in the most efficient way is a challenging problem. To address this issue, we propose a general recursively defined residual block (RDRB) for better feature extraction and propagation through network layers. Based on RDRB we designed recursively defined residual network (RDRN), a novel network architecture which utilizes attention blocks efficiently. Extensive experiments show that the proposed model achieves state-of-the-art results on several popular super-resolution benchmarks and outperforms previous methods by up to 0.43 dB.


翻译:深相神经网络(CNNs)在单一图像超分辨率(SISR)中取得了显著的成绩。然而,非常深的网络可能面临培训困难,难以取得进一步的绩效收益。解决该问题有两个主要趋势:改进网络结构,通过大量层更好地传播特征,并设计一个关注机制以选择最丰富的信息特征。最近的SISM解决方案提出了高度关注和自我关注机制。然而,建立一个网络,以最有效的方式使用关注区块是一个具有挑战性的问题。为了解决这一问题,我们建议建立一个一般的循环定义的残余块(RDRB),以便通过网络层更好地进行特征提取和传播。基于RDRPRB,我们设计了循环定义的残余网络(RDRN),这是一个高效利用关注区块的新型网络结构。广泛的实验表明,拟议的模型在若干流行的超级分辨率基准上取得了最新结果,并超越了以往方法,最高达0.43 dB。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年1月13日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员