We introduce a simple diagnostic test for assessing the goodness of fit of linear regression, and in particular for detecting hidden confounding. We propose to evaluate the sensitivity of the regression coefficient with respect to changes of the marginal distribution of covariates by comparing the so-called higher-order least squares with the usual least squares estimates. In spite of its simplicity, this strategy is extremely general and powerful. Specifically, we show that it allows to distinguish between confounded and unconfounded predictor variables as well as determining ancestor variables in structural equation models.


翻译:我们提出一个简单的诊断测试,评估线性回归的适宜性,特别是发现隐蔽的混乱。我们提议通过比较所谓的高阶最低方位和通常最低方位估计数,评估共差边际分布变化的回归系数的敏感性。尽管这一战略非常简单,但非常笼统和有力。具体地说,我们表明它能够区分有根据和无根据的预测变量,以及确定结构方程模型中的祖先变量。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月21日
Arxiv
0+阅读 · 2021年11月17日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员