Evaluation of the safety perceptions of roundabout users is crucial for improving road safety in mixed-traffic environments. The crash- and conflict-based analyses do not incorporate the socio-demographic characteristics of the roundabout users, which can only be captured through questionnaire surveys on a larger scale. This research evaluated the relationship of roundabout safety perception with demographic factors, driving characteristics, and varying roundabout geometries using multiple correspondence analysis, cluster analysis, factor analysis, and multinomial logistic regression. The study analyzed data from 1,530 respondents across two Indian cities. The study identified three roundabout user clusters. Single-lane roundabouts were perceived as safer during entry and circulation, with a significant prominence among middle-aged users. In contrast, double- and multi-lane roundabouts presented higher perceived risks during exit maneuvers, especially among young, inexperienced, unemployed/self-employed users. Vulnerable road users reported significantly higher perceived risks, especially under suboptimal lighting conditions. Respondents with 10-20 years of driving experience, especially car users, perceived lower risk at single-lane roundabouts but acknowledged the higher risk linked to speed variations and complex maneuvers at multi-lane roundabouts. Driving experience, vehicle type, and geometric configurations were crucial in roundabout safety perception. The study highlighted the need to improve the built environment of roundabouts for vulnerable road users. The roundabout merging area was perceived as the most dangerous spot; however, exits were also perceived as dangerous for double- and multi-lane roundabouts. The findings can benefit policymakers, engineers, and urban planners by enabling them to deploy targeted safety interventions based on issues highlighted in the study.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员