Nonnegative Matrix Factorization (NMF) is the problem of approximating a given nonnegative matrix M through the conic combination of two nonnegative low-rank matrices W and H. Traditionally NMF is tackled by optimizing a specific objective function evaluating the quality of the approximation. This assessment is often done based on the Frobenius norm. In this study, we argue that the Frobenius norm as the "point-to-point" distance may not always be appropriate. Due to the nonnegative combination resulting in a polyhedral cone, this conic perspective of NMF may not naturally align with conventional point-to-point distance measures. Hence, a ray-to-ray chordal distance is proposed as an alternative way of measuring the discrepancy between M and WH. This measure is related to the Euclidean distance on the unit sphere, motivating us to employ nonsmooth manifold optimization approaches. We apply Riemannian optimization technique to solve chordal-NMF by casting it on a manifold. Unlike existing works on Riemannian optimization that require the manifold to be smooth, the nonnegativity in chordal-NMF is a non-differentiable manifold. We propose a Riemannian Multiplicative Update (RMU) that preserves the convergence properties of Riemannian gradient descent without breaking the smoothness condition on the manifold. We showcase the effectiveness of the Chordal-NMF on synthetic datasets as well as real-world multispectral images.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员