Sampling a random permutation with restricted positions, or equivalently approximating the permanent of a 0-1 matrix, is a fundamental problem in computer science, with several notable results attained through the years. In this paper, we first improves the running time of the algorithms for a single permutation. We propose a fast approximation algorithm for the permanent of $\gamma$-dense 0-1 matrix, with an expected running time of $\tilde{O}\left(n^{2+(1-\gamma)/(2\gamma - 1)}\right)$. Our result removes the $n^4$ term from the previous best runtime and provides an improvement for $\gamma \geq 0.6$. When $\gamma = o(1)$, our runtime is $\tilde{\Theta}(n^2)$, which is nearly optimal for this problem. The core of our proof is to demonstrate that the Sinkhorn algorithm, a fundamental tool in matrix scaling, can achieve maximum accuracy of $1/\text{poly}(n)$ for dense matrices in $O(\log n)$ iterations. We further introduce a general model called permutations with disjunctive constraints (PDC) for handling multiple constrained permutations. We propose a novel Markov chain-based algorithm for sampling nearly uniform solutions of PDC within a Lov${\'a}$sz Local Lemma (LLL)-like regime by a novel sampling framework called correlated factorization. For uniform PDC formulas, where all constraints are of the same length and all permutations are of equal size, our algorithm runs in nearly linear time with respect to the number of variables.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员