A unified approach of Positive and Unlabelled (PU)-learning, Semi-Supervised Learning (SSL), and Open-Set Recognition (OSR) would significantly enhance the development of cost-efficient application-grade classifiers. However, previous attempts have conflated the definitions of \mbox{\textit{observed}} and \mbox{\textit{unobserved}} novel categories. Observed novel categories are defined in PU-learning as those in unlabelled training data and exist due to an incomplete set of category labels for the training set. In contrast, unobserved novel categories are defined in OSR as those that only exist in the testing data and represent new and interesting patterns that emerge over time. To maintain safe and practical classifier development, models must generalise the difference between these novel category types. In this letter, we thoroughly review the relevant machine learning research fields to propose a new unified machine learning policy called Open-set Learning with Augmented Categories by exploiting Unlabelled data or Open-LACU. Specifically, Open-LACU requires models to accurately classify $K > 1$ number of labelled categories while simultaneously detecting and separating observed novel categories into the augmented background category ($K + 1$) and further detecting and separating unobserved novel categories into the augmented unknown category ($K + 2$). Open-LACU is the first machine learning policy to generalise observed and unobserved novel categories. The significance of Open-LACU is also highlighted by discussing its application in semantic segmentation of remote sensing images, object detection within medical radiology images and disease identification through cough sound analysis.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员