In this paper, we explore quadratures for the evaluation of $B^T \phi(A) B$ where $A$ is a symmetric nonnegative-definite matrix in $\mathbb{R}^{n \times n}$, $B$ is a tall matrix in $\mathbb{R}^{n \times p}$, and $\phi(\cdot)$ represents a matrix function that is regular enough in the neighborhood of $A$'s spectrum, e.g., a Stieltjes or exponential function. These formulations, for example, commonly arise in the computation of multiple-input multiple-output (MIMO) transfer functions for diffusion PDEs. We propose an approximation scheme for $B^T \phi(A) B$ leveraging the block Lanczos algorithm and its equivalent representation through Stieltjes matrix continued fractions. We extend the notion of Gauss-Radau quadrature to the block case, facilitating the derivation of easily computable error bounds. For problems stemming from the discretization of self-adjoint operators with a continuous spectrum, we obtain sharp estimates grounded in potential theory for Pad\'e approximations and justify extrapolation algorithms at no added computational cost. The obtained results are illustrated on large-scale examples of 2D diffusion and 3D Maxwell's equations as well as a graph from the SNAP repository. We also present promising experimental results on convergence acceleration via random enrichment of the initial block $B$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员