We present randomized distributed algorithms for the maximal independent set problem (MIS) that, while keeping the time complexity nearly matching the best known, reduce the energy complexity substantially. These algorithms work in the standard CONGEST model of distributed message passing with $O(\log n)$ bit messages. The time complexity measures the number of rounds in the algorithm. The energy complexity measures the number of rounds each node is awake; during other rounds, the node sleeps and cannot perform any computation or communications. Our first algorithm has an energy complexity of $O(\log\log n)$ and a time complexity of $O(\log^2 n)$. Our second algorithm is faster but slightly less energy-efficient: it achieves an energy complexity of $O(\log^2 \log n)$ and a time complexity of $O(\log n \cdot \log\log n \cdot \log^* n)$. Thus, this algorithm nearly matches the $O(\log n)$ time complexity of the state-of-the-art MIS algorithms while significantly reducing their energy complexity from $O(\log n)$ to $O(\log^2 \log n)$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员