Neural networks have changed the way machines interpret the world. At their core, they learn by following gradients, adjusting their parameters step by step until they identify the most discriminant patterns in the data. This process gives them their strength, yet it also opens the door to a hidden flaw. The very gradients that help a model learn can also be used to produce small, imperceptible tweaks that cause the model to completely alter its decision. Such tweaks are called adversarial attacks. These attacks exploit this vulnerability by adding tiny, imperceptible changes to images that, while leaving them identical to the human eye, cause the model to make wrong predictions. In this work, we propose Adversarially-trained Contrastive Hard-mining for Optimized Robustness (ANCHOR), a framework that leverages the power of supervised contrastive learning with explicit hard positive mining to enable the model to learn representations for images such that the embeddings for the images, their augmentations, and their perturbed versions cluster together in the embedding space along with those for other images of the same class while being separated from images of other classes. This alignment helps the model focus on stable, meaningful patterns rather than fragile gradient cues. On CIFAR-10, our approach achieves impressive results for both clean and robust accuracy under PGD-20 (epsilon = 0.031), outperforming standard adversarial training methods. Our results indicate that combining adversarial guidance with hard-mined contrastive supervision helps models learn more structured and robust representations, narrowing the gap between accuracy and robustness.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员