Running Large Language Models (LLMs) on edge devices is crucial for reducing latency, improving real-time processing, and enhancing privacy. By performing inference directly on the device, data does not need to be sent to the cloud, ensuring faster responses and reducing reliance on network connectivity. However, implementing LLMs on edge devices presents challenges, particularly with managing key-value (KV) caches, which plays a pivotal role in LLM serving. As the input text lengthens, the size of the KV cache increases linearly with the sequence length, leading to a significant memory footprint and data access costs. On the other hand, edge devices have limited memory and computational power, making it hard to store and efficiently access the large caches needed for LLM inference. To mitigate the substantial overhead caused by KV cache, we propose using embedded DRAM (eDRAM) as the primary storage for LLM serving in edge device, which offers higher storage density compared to SRAM. However, to ensure data integrity, eDRAM needs periodic refresh operations, which are power-intensive. To reduce eDRAM costs and improve overall system performance, we propose~\textit{Kelle}, a software-hardware co-design solution optimized for deploying LLMs on eDRAM-based edge systems. Combined with our fine-grained memory eviction, recomputation, and refresh control algorithms, the \textit{Kelle} accelerator delivers a $3.9\times$ speedup and $4.5\times$ energy savings compared to existing baseline solutions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2024年3月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员