In future 6G networks, dependable networks will enable telecommunication services such as remote control of robots or vehicles with strict requirements on end-to-end network performance in terms of delay, delay variation, tail distributions, and throughput. With respect to such networks, it is paramount to be able to determine what performance level the network segment can guarantee at a given point in time. One promising approach is to use predictive models trained using machine learning (ML). Predicting performance metrics such as one-way delay (OWD), in a timely manner, provides valuable insights for the network, user equipments (UEs), and applications to address performance trends, deviations, and violations. Over the course of time, a dynamic network environment results in distributional shifts, which causes catastrophic forgetting and drop of ML model performance. In continual learning (CL), the model aims to achieve a balance between stability and plasticity, enabling new information to be learned while preserving previously learned knowledge. In this paper, we target on the challenges of catastrophic forgetting of OWD prediction model. We propose a novel approach which introducing the concept of multi-generator for the state-of-the-art CL generative replay framework, along with tabular variational autoencoders (TVAE) as generators. The domain knowledge of UE capabilities is incorporated into the learning process for determining generator setup and relevance. The proposed approach is evaluated across a diverse set of scenarios with data that is collected in a realistic 5G testbed, demonstrating its outstanding performance in comparison to baselines.


翻译:在未来6G网络中,可靠网络将支持远程机器人或车辆控制等电信服务,这些服务对端到端网络性能在延迟、延迟变化、尾部分布和吞吐量方面有严格要求。针对此类网络,关键能力在于确定网络段在给定时间点能够保证的性能水平。一种有前景的方法是使用机器学习(ML)训练的预测模型。及时预测单向延迟(OWD)等性能指标,为网络、用户设备(UE)和应用提供了应对性能趋势、偏差和违规的宝贵洞察。随着时间推移,动态网络环境会导致分布偏移,从而引发灾难性遗忘和ML模型性能下降。在持续学习(CL)中,模型旨在实现稳定性与可塑性之间的平衡,既能学习新信息,又能保留先前习得的知识。本文针对OWD预测模型的灾难性遗忘挑战,提出一种新颖方法,为最先进的CL生成回放框架引入多生成器概念,并采用表格变分自编码器(TVAE)作为生成器。该方法将UE能力的领域知识融入学习过程,以确定生成器设置和相关性。通过在现实5G测试平台收集的数据集上进行多场景评估,所提方法相较于基线模型展现出卓越性能。

0
下载
关闭预览

相关内容

生成器是一次生成一个值的特殊类型函数。可以将其视为可恢复函数。调用该函数将返回一个可用于生成连续 x 值的生成【Generator】,简单的说就是在函数的执行过程中,yield语句会把你需要的值返回给调用生成器的地方,然后退出函数,下一次调用生成器函数的时候又从上次中断的地方开始执行,而生成器内的所有变量参数都会被保存下来供下一次使用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员