State-of-the-art embeddings often capture distinct yet complementary discriminative features: For instance, one image embedding model may excel at distinguishing fine-grained textures, while another focuses on object-level structure. Motivated by this observation, we propose a principled approach to fuse such complementary representations through kernel multiplication. Multiplying the kernel similarity functions of two embeddings allows their discriminative structures to interact, producing a fused representation whose kernel encodes the union of the clusters identified by each parent embedding. This formulation also provides a natural way to construct joint kernels for paired multi-modal data (e.g., image-text tuples), where the product of modality-specific kernels inherits structure from both domains. We highlight that this kernel product is mathematically realized via the Kronecker product of the embedding feature maps, yielding our proposed KrossFuse framework for embedding fusion. To address the computational cost of the resulting high-dimensional Kronecker space, we further develop RP-KrossFuse, a scalable variant that leverages random projections for efficient approximation. As a key application, we use this framework to bridge the performance gap between cross-modal embeddings (e.g., CLIP, BLIP) and unimodal experts (e.g., DINOv2, E5). Experiments show that RP-KrossFuse effectively integrates these models, enhancing modality-specific performance while preserving cross-modal alignment. The project code is available at https://github.com/yokiwuuu/KrossFuse.
翻译:暂无翻译