In today's age, it is becoming increasingly difficult to decipher truth from lies. Every day, politicians, media outlets, and public figures make conflicting claims$\unicode{x2014}$often about topics that can, in principle, be verified against structured data. For instance, statements about crime rates, economic growth or healthcare can all be verified against official public records and structured datasets. Building a system that can automatically do that would have sounded like science fiction just a few years ago. Yet, with the extraordinary progress in LLMs and agentic AI, this is now within reach. Still, there remains a striking gap between what is technically possible and what is being demonstrated by recent work. Most existing verification systems operate only on small, single-table databases$\unicode{x2014}$typically a few hundred rows$\unicode{x2014}$that conveniently fit within an LLM's context window. In this paper we report our progress on Thucy, the first cross-database, cross-table multi-agent claim verification system that also provides concrete evidence for each verification verdict. Thucy remains completely agnostic to the underlying data sources before deployment and must therefore autonomously discover, inspect, and reason over all available relational databases to verify claims. Importantly, Thucy also reports the exact SQL queries that support its verdict (whether the claim is accurate or not) offering full transparency to expert users familiar with SQL. When evaluated on the TabFact dataset$\unicode{x2014}$the standard benchmark for fact verification over structured data$\unicode{x2014}$Thucy surpasses the previous state of the art by 5.6 percentage points in accuracy (94.3% vs. 88.7%).


翻译:暂无翻译

0
下载
关闭预览

相关内容

SQL 全名是结构化查询语言,是用于数据库中的标准数据查询语言,IBM 公司最早使用在其开发的数据库系统中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员