Despite the rising prevalence of neural language models, recent empirical evidence suggests their deficiency in compositional generalization. One of the current de-facto solutions to this problem is compositional data augmentation, which aims to introduce additional compositional inductive bias. However, existing handcrafted augmentation strategies offer limited improvement when systematic generalization of neural language models requires multi-grained compositional bias (i.e., not limited to either lexical or structural biases alone) or when training sentences have an imbalanced difficulty distribution. To address these challenges, we first propose a novel compositional augmentation strategy called Component Substitution (CompSub), which enables multi-grained composition of substantial substructures across the entire training set. Furthermore, we introduce the Learning Component Substitution (LCS) framework. This framework empowers the learning of component substitution probabilities in CompSub in an end-to-end manner by maximizing the loss of neural language models, thereby prioritizing challenging compositions with elusive concepts and novel contexts. We extend the key ideas of CompSub and LCS to the recently emerging in-context learning scenarios of pre-trained large language models (LLMs), proposing the LCS-ICL algorithm to enhance the few-shot compositional generalization of state-of-the-art (SOTA) LLMs. Theoretically, we provide insights into why applying our algorithms to language models can improve compositional generalization performance. Empirically, our results on four standard compositional generalization benchmarks(SCAN, COGS, GeoQuery, and COGS-QL) demonstrate the superiority of CompSub, LCS, and LCS-ICL, with improvements of up to 66.5%, 10.3%, 1.4%, and 8.8%, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员