The concept of redundancy in SAT leads to more expressive and powerful proof search techniques, e.g., able to express various inprocessing techniques, and originates interesting hierarchies of proof systems [Heule et$.$al'20, Buss-Thapen'19]. Redundancy has also been integrated in MaxSAT [Ihalainen et$.$al'22, Berg et$.$al'23, Bonacina et$.$al'24]. In this paper, we define a structured hierarchy of redundancy proof systems for MaxSAT, with the goal of studying its proof complexity. We obtain MaxSAT variants of proof systems such as SPR, PR, SR, and others, previously defined for SAT. All our rules are polynomially checkable, unlike [Ihalainen et$.$al'22]. Moreover, they are simpler and weaker than [Berg et$.$al'23], and possibly amenable to lower bounds. This work also complements the approach of [Bonacina et$.$al'24]. Their proof systems use different rule sets for soft and hard clauses, while here we propose a system using only hard clauses and blocking variables. This is easier to integrate with current solvers and proof checkers. We discuss the strength of the systems introduced, we show some limitations of them, and we give a short cost-SR proof that any assignment for the weak pigeonhole principle $PHP^{m}_{n}$ falsifies at least $m-n$ clauses. We conclude by discussing the integration of our rules with the MaxSAT resolution proof system, which is a commonly studied proof system for MaxSAT.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月19日
Arxiv
0+阅读 · 11月4日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 11月19日
Arxiv
0+阅读 · 11月4日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
11+阅读 · 2019年4月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员