The creation of digital twins of experimental testbeds allows the validation of novel wireless networking solutions and the evaluation of their performance in realistic conditions, without the cost, complexity and limited availability of experimental testbeds. Current trace-based simulation approaches for ns-3 enable the repetition and reproduction of the same exact conditions observed in past experiments. However, they are limited by the fact that the simulation setup must exactly match the original experimental setup, including the network topology, the mobility patterns and the number of network nodes. In this paper, we propose the Machine Learning based Propagation Loss (MLPL) module for ns-3. Based on network traces collected in an experimental testbed, the MLPL module estimates the propagation loss as the sum of a deterministic path loss and a stochastic fast-fading loss. The MLPL module is validated with unit tests. Moreover, we test the MLPL module with real network traces, and compare the results obtained with existing propagation loss models in ns-3 and real experimental results. The results obtained show that the MLPL module can accurately predict the propagation loss observed in a real environment and reproduce the experimental conditions of a given testbed, enabling the creation of digital twins of wireless network environments in ns-3.


翻译:实验性试验床的数码双胞胎的创建使得能够验证新型无线联网解决方案,并在没有费用、复杂性和有限的试验试验床可用性的情况下,在现实条件下评估其性能,而没有费用、复杂性和有限的试验试验床的可用性能。目前以轨迹为基础的Ns-3模拟方法能够重复和复制过去实验中观察到的同样确切的条件。但是,由于模拟设置必须与最初的试验设置完全匹配,包括网络地形、移动模式和网络节点的数目。在本文件中,我们提议为ns-3使用机器学习促销损失模块。根据实验试验床收集的网络痕迹,MLPL模块估计传播损失是确定性路径丢失和随机快速毁损的总和。MLPL模块经过单位测试得到验证。此外,我们用真实的网络痕迹、移动模式和网络节点数与现有的传播损失模型在ns-3和实际实验结果进行比较。获得的结果表明,MLPL模块能够准确预测在实际试验环境中观测到的传播损失情况,并复制给定型双胞床试验环境的试验条件。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员