We introduce a geodesic synthetic control method for causal inference that extends existing synthetic control methods to scenarios where outcomes are elements in a geodesic metric space rather than scalars. Examples of such outcomes include distributions, compositions, networks, trees and functional data, among other data types that can be viewed as elements of a geodesic metric space given a suitable metric. We extend this further to geodesic synthetic difference-in-differences that builds on the established synthetic difference-in-differences for Euclidean outcomes. This estimator generalizes both the geodesic synthetic control method and a previously proposed geodesic difference-in-differences method and exhibits a double robustness property. The proposed geodesic synthetic control method is illustrated through comprehensive simulation studies and applications to the employment composition changes following the 2011 Great East Japan Earthquake, and the impact of abortion liberalization policy on fertility patterns in East Germany. We illustrate the proposed geodesic synthetic difference-in-differences by studying the consequences of the Soviet Union's collapse on age-at-death distributions for males and females.


翻译:我们提出了一种用于因果推断的测地线合成控制方法,将现有的合成控制方法扩展到结果变量为测地度量空间中的元素而非标量的场景。此类结果变量的示例包括分布、成分、网络、树和函数数据等,这些数据类型在给定适当度量后可被视为测地度量空间中的元素。我们进一步将其扩展为测地线合成双重差分法,该方法建立在成熟的欧几里得结果变量合成双重差分法基础上。该估计器同时推广了测地线合成控制方法和先前提出的测地线双重差分方法,并展现出双重稳健性。所提出的测地线合成控制方法通过全面的模拟研究以及应用于2011年东日本大地震后就业结构变化和堕胎自由化政策对东德生育模式影响的实证分析得到验证。我们通过研究苏联解体对男性和女性死亡年龄分布的影响,展示了所提出的测地线合成双重差分法的应用。

0
下载
关闭预览

相关内容

【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
33+阅读 · 2021年2月27日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员