We correct two errors in our paper [4]. First error concerns the definition of the SVI solution, where a boundary term which arises due to the Dirichlet boundary condition, was not included. The second error concerns the discrete estimate [4, Lemma 4.4], which involves the discrete Laplace operator. We provide an alternative proof of the estimate in spatial dimension $d=1$ by using a mass lumped version of the discrete Laplacian. Hence, after a minor modification of the fully discrete numerical scheme the convergence in $d=1$ follows along the lines of the original proof. The convergence proof of the time semi-discrete scheme, which relies on the continuous counterpart of the estimate [4, Lemma 4.4], remains valid in higher spatial dimension. The convergence of the fully discrete finite element scheme from [4] in any spatial dimension is shown in [3] by using a different approach.


翻译:我们纠正了我们文件中的两个错误[4]。第一个错误涉及SVI解决方案的定义,其中不包括由于Drichlet边界条件产生的边界术语。第二个错误涉及离散估计[4, Lemma 4.4],涉及离散拉普尔操作员。我们用一个大片的离散拉平板块块版来提供空间维度估计的替代证据$d=1美元。因此,在对完全离散的数字办法稍作修改之后,以美元=1美元表示的趋同与原始证据的大致相同。时间半分解办法的趋同证明,依赖[4, Lemma 4.4]这一估计的连续对应方,在更高的空间维度中仍然有效。完全离散的有限要素办法与[4]的任何空间维度的趋同在[3]中以不同方法显示。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员