Let $G=(V,E)$ be an undirected weighted graph on $n=|V|$ vertices and $S\subseteq V$ be a Steiner set. Steiner mincut is a well-studied concept, which provides a generalization to both (s,t)-mincut (when $|S|=2$) and global mincut (when $|S|=n$). Here, we address the problem of designing a compact data structure that can efficiently report a Steiner mincut and its capacity after the failure of any edge in $G$; such a data structure is known as a \textit{Sensitivity Oracle} for Steiner mincut. In the area of minimum cuts, although many Sensitivity Oracles have been designed in unweighted graphs, however, in weighted graphs, Sensitivity Oracles exist only for (s,t)-mincut [Annals of Operations Research 1991, NETWORKS 2019, ICALP 2024], which is just a special case of Steiner mincut. Here, we generalize this result to any arbitrary set $S\subseteq V$. 1. Sensitivity Oracle: Assuming the capacity of every edge is known, a. there is an ${\mathcal O}(n)$ space data structure that can report the capacity of Steiner mincut in ${\mathcal O}(1)$ time and b. there is an ${\mathcal O}(n(n-|S|+1))$ space data structure that can report a Steiner mincut in ${\mathcal O}(n)$ time after the failure of any edge in $G$. 2. Lower Bound: We show that any data structure that, after the failure of any edge, can report a Steiner mincut or its capacity must occupy $\Omega(n^2)$ bits of space in the worst case, irrespective of the size of the Steiner set. The lower bound in (2) shows that the assumption in (1) is essential to break the $\Omega(n^2)$ lower bound on space. For $|S|=n-k$ for any constant $k\ge 0$, it occupies only ${\mathcal O}(n)$ space. So, we also present the first Sensitivity Oracle occupying ${\mathcal O}(n)$ space for global mincut.


翻译:暂无翻译

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月5日
Arxiv
0+阅读 · 2024年11月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员