Because of reinforcement learning's (RL) ability to automatically create more adaptive controlling logics beyond the hand-crafted heuristics, numerous effort has been made to apply RL to congestion control (CC) design for real time video communication (RTC) applications and has successfully shown promising benefits over the rule-based RTC CCs. Online reinforcement learning is often adopted to train the RL models so the models can directly adapt to real network environments. However, its trail-and-error manner can also cause catastrophic degradation of the quality of experience (QoE) of RTC application at run time. Thus, safeguard strategies such as falling back to hand-crafted heuristics can be used to run along with RL models to guarantee the actions explored in the training sensible, despite that these safeguard strategies interrupt the learning process and make it more challenging to discover optimal RL policies. The recent emergence of loss-tolerant neural video codecs (NVC) naturally provides a layer of protection for the online learning of RL-based congestion control because of its resilience to packet losses, but such packet loss resilience have not been fully exploited in prior works yet. In this paper, we present a reinforcement learning (RL) based congestion control which can be aware of and takes advantage of packet loss tolerance characteristic of NVCs via reward in online RL learning. Through extensive evaluation on various videos and network traces in a simulated environment, we demonstrate that our NVC-aware CC running with the loss-tolerant NVC reduces the training time by 41\% compared to other prior RL-based CCs. It also boosts the mean video quality by 0.3 to 1.6dB, lower the tail frame delay by 3 to 200ms, and reduces the video stalls by 20\% to 77\% in comparison with other baseline RTC CCs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员