Existing deepfake detectors face several challenges in achieving robustness and generalization. One of the primary reasons is their limited ability to extract relevant information from forgery videos, especially in the presence of various artifacts such as spatial, frequency, temporal, and landmark mismatches. Current detectors rely on pixel-level features that are easily affected by unknown disturbances or facial landmarks that do not provide sufficient information. Furthermore, most detectors cannot utilize information from multiple domains for detection, leading to limited effectiveness in identifying deepfake videos. To address these limitations, we propose a novel framework, namely Multimodal Graph Learning (MGL) that leverages information from multiple modalities using two GNNs and several multimodal fusion modules. At the frame level, we employ a bi-directional cross-modal transformer and an adaptive gating mechanism to combine the features from the spatial and frequency domains with the geometric-enhanced landmark features captured by a GNN. At the video level, we use a Graph Attention Network (GAT) to represent each frame in a video as a node in a graph and encode temporal information into the edges of the graph to extract temporal inconsistency between frames. Our proposed method aims to effectively identify and utilize distinguishing features for deepfake detection. We evaluate the effectiveness of our method through extensive experiments on widely-used benchmarks and demonstrate that our method outperforms the state-of-the-art detectors in terms of generalization ability and robustness against unknown disturbances.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月13日
Arxiv
16+阅读 · 2021年3月2日
Deep Learning for Generic Object Detection: A Survey
Arxiv
14+阅读 · 2018年9月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员