We present a general framework for constructing error-correcting codes using distributed graph coloring under the LOCAL model. Building on the correspondence between independent sets in the confusion graph and valid codes, we show that the color of a single vertex - consistent with a global proper coloring - can be computed in polynomial time using a modified version of Linial's coloring algorithm, leading to efficient encoding and decoding. Our results include: i) uniquely decodable code constructions for a constant number of errors of any type with redundancy twice the Gilbert-Varshamov bound; ii) list-decodable codes via a proposed extension of graph coloring, namely, hypergraph labeling; iii) an incremental synchronization scheme with reduced average-case communication when the edit distance is not precisely known; and iv) the first asymptotically optimal codes (up to a factor of 8) for correcting bursts of unbounded-length edits. Compared to syndrome compression, our approach is more flexible and generalizable, does not rely on a good base code, and achieves improved redundancy across a range of parameters.


翻译:我们提出了一个在LOCAL模型下利用分布式图着色构建纠错码的通用框架。基于混淆图中独立集与有效编码之间的对应关系,我们证明了单个顶点的颜色——与全局真着色一致——可以通过改进版的Linial着色算法在多项式时间内计算,从而实现高效的编码与解码。我们的研究成果包括:i) 针对任意类型恒定数量错误的唯一可译码构造,其冗余度为Gilbert-Varshamov界的两倍;ii) 通过提出的图着色扩展(即超图标记)实现列表可译码;iii) 当编辑距离未知时,具有降低平均情况通信量的增量同步方案;iv) 首个用于纠正无界长度编辑突发错误的渐近最优编码(达到8倍因子内)。与校验子压缩方法相比,我们的方法更具灵活性和可扩展性,不依赖于优质基码,并在多种参数范围内实现了更优的冗余度。

0
下载
关闭预览

相关内容

《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
【ACL2020-Facebook AI】大规模无监督跨语言表示学习
专知会员服务
34+阅读 · 2020年4月5日
[CVPR 2021] 序列到序列对比学习的文本识别
专知
10+阅读 · 2021年4月14日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员