This tutorial uses the conjunction of INLA and INLAjoint R-packages to show how various Bayesian survival models can be fitted using the integrated nested Laplace approximation in a clear, legible, and comprehensible manner. Such models include accelerated failure time, proportional hazards, mixture cure, competing risks, multi-state, frailty, and joint models of longitudinal and survival data, originally presented in the article "Bayesian survival analysis with BUGS" (Alvares et al., 2021). In addition, we illustrate the implementation of a new joint model for a longitudinal semicontinuous marker, recurrent events, and a terminal event. Our proposal aims to provide the reader with syntax examples for implementing survival models using a fast and accurate Bayesian inferential approach.


翻译:这个指导性模型使用INLA和INLA联合R组合组合组合来显示如何以清晰、可读和易懂的方式利用综合嵌巢式拉普尔近似值来安装各种巴伊西亚生存模型,其中包括加速故障时间、比例危害、混合治愈、相互竞争的风险、多州、脆弱以及纵向和生存数据联合模型,这些模型最初在“巴伊西亚与BUGS的存活分析”(Alvares等人,2021年)中提出。此外,我们还介绍了采用新的联合模型,用于纵向半连续标记、经常性事件和终点事件。我们的建议旨在为读者提供使用快速准确的巴伊西亚推断方法实施生存模型的综合税实例。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月6日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员