We present a novel approach for the detection of events in systems of ordinary differential equations. The new method combines the unique features of Taylor integrators with state-of-the-art polynomial root finding techniques to yield a novel algorithm ensuring strong event detection guarantees at a modest computational overhead. Detailed tests and benchmarks focused on problems in astrodynamics and celestial mechanics (such as collisional N-body systems, spacecraft dynamics around irregular bodies accounting for eclipses, computation of Poincare' sections, etc.) show how our approach is superior in both performance and detection accuracy to strategies commonly employed in modern numerical integration works. The new algorithm is available in our open source Taylor integration package heyoka.


翻译:新的方法将泰勒集成商的独特特征与最先进的多元根基调查技术结合起来,产生一种新奇算法,确保适度的计算间接费用能保证对事件探测的保证。 详细的测试和基准侧重于天体动力学和天体力学(例如碰撞的N-体系统、围绕非正常日蚀核算机体的航天器动态、Poincare部分的计算等)的问题。 新的方法表明我们的方法在性能和探测准确性方面如何优于现代数字集成工程通常采用的战略。 新的算法可以在我们开放源的泰勒集成软件中找到。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员