Deep learning (DL) has proven to be effective in detecting sophisticated malware that is constantly evolving. Even though deep learning has alleviated the feature engineering problem, finding the most optimal DL model, in terms of neural architecture search (NAS) and the model's optimal set of hyper-parameters, remains a challenge that requires domain expertise. In addition, many of the proposed state-of-the-art models are very complex and may not be the best fit for different datasets. A promising approach, known as Automated Machine Learning (AutoML), can reduce the domain expertise required to implement a custom DL model. AutoML reduces the amount of human trial-and-error involved in designing DL models, and in more recent implementations can find new model architectures with relatively low computational overhead. This work provides a comprehensive analysis and insights on using AutoML for static and online malware detection. For static, our analysis is performed on two widely used malware datasets: SOREL-20M to demonstrate efficacy on large datasets; and EMBER-2018, a smaller dataset specifically curated to hinder the performance of machine learning models. In addition, we show the effects of tuning the NAS process parameters on finding a more optimal malware detection model on these static analysis datasets. Further, we also demonstrate that AutoML is performant in online malware detection scenarios using Convolutional Neural Networks (CNNs) for cloud IaaS. We compare an AutoML technique to six existing state-of-the-art CNNs using a newly generated online malware dataset with and without other applications running in the background during malware execution.In general, our experimental results show that the performance of AutoML based static and online malware detection models are on par or even better than state-of-the-art models or hand-designed models presented in literature.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员