The concept of antidistinguishability of quantum states has been studied to investigate foundational questions in quantum mechanics. It is also called quantum state elimination, because the goal of such a protocol is to guess which state, among finitely many chosen at random, the system is not prepared in (that is, it can be thought of as the first step in a process of elimination). Antidistinguishability has been used to investigate the reality of quantum states, ruling out $\psi$-epistemic ontological models of quantum mechanics [Pusey et al., Nat. Phys., 8(6):475-478, 2012]. Thus, due to the established importance of antidistinguishability in quantum mechanics, exploring it further is warranted. In this paper, we provide a comprehensive study of the optimal error exponent -- the rate at which the optimal error probability vanishes to zero asymptotically -- for classical and quantum antidistinguishability. We derive an exact expression for the optimal error exponent in the classical case and show that it is given by the multivariate classical Chernoff divergence. Our work thus provides this divergence with a meaningful operational interpretation as the optimal error exponent for antidistinguishing a set of probability measures. For the quantum case, we provide several bounds on the optimal error exponent: a lower bound given by the best pairwise Chernoff divergence of the states, a single-letter semi-definite programming upper bound, and lower and upper bounds in terms of minimal and maximal multivariate quantum Chernoff divergences. It remains an open problem to obtain an explicit expression for the optimal error exponent for quantum antidistinguishability.


翻译:暂无翻译

0
下载
关闭预览

相关内容

自动结构变分推理,Automatic structured variational inference
专知会员服务
41+阅读 · 2020年2月10日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
基于深度元学习的因果推断新方法
图与推荐
12+阅读 · 2020年7月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
基于深度元学习的因果推断新方法
图与推荐
12+阅读 · 2020年7月21日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员