Evolving software with an increasing number of features is harder to understand and thus harder to use. Software release planning has been concerned with planning these additions. Moreover, software of increasing size takes more effort to be maintained. In the domain of mobile apps, too much functionality can easily impact usability, maintainability, and resource consumption. Hence, it is important to understand the extent to which the law of continuous growth applies to mobile apps. Previous work showed that the deletion of functionality is common and sometimes driven by user reviews. However, it is not known if these deletions are visible or important to the app users. In this study, we performed a survey study with 297 mobile app users to understand the significance of functionality deletion for them. Our results showed that for the majority of users, the deletion of features corresponds with negative sentiments and change in usage and even churn. Motivated by these preliminary results, we propose RADIATION to input user reviews and recommend if any functionality should be deleted from an app's User Interface (UI). We evaluate RADIATION using historical data and surveying developers' opinions. From the analysis of 190,062 reviews from 115 randomly selected apps, we show that RADIATION can recommend functionality deletion with an average F-Score of 74% and if sufficiently many negative user reviews suggest so.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员