Video deraining is an important task in computer vision as the unwanted rain hampers the visibility of videos and deteriorates the robustness of most outdoor vision systems. Despite the significant success which has been achieved for video deraining recently, two major challenges remain: 1) how to exploit the vast information among continuous frames to extract powerful spatio-temporal features across both the spatial and temporal domains, and 2) how to restore high-quality derained videos with a high-speed approach. In this paper, we present a new end-to-end video deraining framework, named Enhanced Spatio-Temporal Interaction Network (ESTINet), which considerably boosts current state-of-the-art video deraining quality and speed. The ESTINet takes the advantage of deep residual networks and convolutional long short-term memory, which can capture the spatial features and temporal correlations among continuing frames at the cost of very little computational source. Extensive experiments on three public datasets show that the proposed ESTINet can achieve faster speed than the competitors, while maintaining better performance than the state-of-the-art methods.


翻译:视频脱线是计算机愿景中的一项重要任务,因为不想要的雨阻碍视频的可见度,并使大多数室外视觉系统的稳健性恶化。尽管最近视频脱线工作取得了显著成功,但仍存在两大挑战:(1) 如何利用连续框架之间的大量信息,以在空间和时空领域提取强大的时空特征;(2) 如何以高速方法恢复高质量的脱线视频。 在本文中,我们介绍了一个新的终端到终端视频脱线框架,名为“强化空间-时空互动网络 ” ( ESTINet ), 大大提升了目前最新的视频脱线质量和速度。 ERT网络利用了深层残余网络和革命性长短期记忆的优势,这些网络可以以极小的计算来源的成本捕捉到连续框架之间的空间特征和时间相关性。 对三个公共数据集的广泛实验显示,拟议的ESTINet可以比竞争者更快的速度,同时保持比最新方法更好的性能。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
97+阅读 · 2019年12月23日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员