Automated monitoring of marine mammals in the St. Lawrence Estuary faces extreme challenges: calls span low-frequency moans to ultrasonic clicks, often overlap, and are embedded in variable anthropogenic and environmental noise. We introduce a multi-step, attention-guided framework that first segments spectrograms to generate soft masks of biologically relevant energy and then fuses these masks with the raw inputs for multi-band, denoised classification. Image and mask embeddings are integrated via mid-level fusion, enabling the model to focus on salient spectrogram regions while preserving global context. Using real-world recordings from the Saguenay St. Lawrence Marine Park Research Station in Canada, we demonstrate that segmentation-driven attention and mid-level fusion improve signal discrimination, reduce false positive detections, and produce reliable representations for operational marine mammal monitoring across diverse environmental conditions and signal-to-noise ratios. Beyond in-distribution evaluation, we further assess the generalization of Mask-Guided Classification (MGC) under distributional shifts by testing on spectrograms generated with alternative acoustic transformations. While high-capacity baseline models lose accuracy in this Out-of-distribution (OOD) setting, MGC maintains stable performance, with even simple fusion mechanisms (gated, concat) achieving comparable results across distributions. This robustness highlights the capacity of MGC to learn transferable representations rather than overfitting to a specific transformation, thereby reinforcing its suitability for large-scale, real-world biodiversity monitoring. We show that in all experimental settings, the MGC framework consistently outperforms baseline architectures, yielding substantial gains in accuracy on both in-distribution and OOD data.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员