Software developed on public platform is a source of data that can be used to make predictions about those projects. While the individual developing activity may be random and hard to predict, the developing behavior on project level can be predicted with good accuracy when large groups of developers work together on software projects. To demonstrate this, we use 64,181 months of data from 1,159 GitHub projects to make various predictions about the recent status of those projects (as of April 2020). We find that traditional estimation algorithms make many mistakes. Algorithms like $k$-nearest neighbors (KNN), support vector regression (SVR), random forest (RFT), linear regression (LNR), and regression trees (CART) have high error rates. But that error rate can be greatly reduced using hyperparameter optimization. To the best of our knowledge, this is the largest study yet conducted, using recent data for predicting multiple health indicators of open-source projects.


翻译:在公共平台上开发的软件是可用于预测这些项目的数据来源。 虽然个体开发活动可能是随机的,而且很难预测,但当大型开发者群体共同开展软件项目时,项目一级正在发展的行为是可以准确预测的。为了证明这一点,我们使用来自1,159 GitHub 项目的64,181个月的数据对这些项目的最近状况做出各种预测(截至2020年4月)。我们发现传统估算算法有许多错误。 Algorithms, 如$k$-earest near near near news(KNN),支持矢量回归(SVR)、随机森林(RFT)、线性回归(LNR)和回归树(CART)的错误率很高。但是,使用超光度优化可以大大降低错误率。 据我们所知,这是目前利用最新数据预测多种开放源项目的健康指标而进行的最大研究。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员